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Abstract. SITAR is an architecture that incorporates the fundamental ideas of
fault tolerant computing such as redundancy, voting, and adaptive reconfigu-
ration, along with acceptance testing in a security setting, in order to enable
commercial-off-the-shelf servers to continue providing service in the presence
of intrusion or partial compromise. This paper presents the integrated adaptive
reconfiguration feature of the SITAR system, which can dynamically change the
system configuration in response to the changes in level of intrusion threat in
order to maintain service availability. The reconfiguration mechanism has im-
plications on the system design and operation, more specifically the oscillation
phenomenon. The discussion covers important aspects of the SITAR adaptive re-
configuration mechanism, including a generic algorithm of its operation, and how
it addresses the oscillation problem. In order to actively manage the reconfigura-
tion process and reduce the tendency toward disruptive oscillations, the ARM
design incorporates mechanisms according to the feedback loop model and em-
ploys several strategies, such as mutual exclusion, steady state monitoring and
system observation, for cooperative control. This adaptive mechanism has been
implemented and demonstrated as part of the SITAR prototype system.

1 Introduction

Society’s increased reliance on software systems has increased the demand for soft-
ware that operates for extended periods of time, without interruption. The demand for
longer operation requires software systems to be flexible enough to adapt in response
to environment changes during the longer periods. Moreover, the presence of attacks
has become a ubiquitous part of the software system landscape as more and more soft-
ware systems proliferate to an increasing number of industries. Traditionally, intrusion
research software has focused on keeping intruders out [1, 11]. The results of that ap-
proach has seen limited success as new attacks render existing intrusion prevention
methods ineffective. In response to the challenge of extended operation in an environ-
ment containing the potential of intrusion, we concede that systems may not been able
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to prevent all intrusions. A fault tolerant approach anticipates that some attacks will
be successful. However, continued operation in the presence of those attacks enables
system to meet the demands of continued operation.

SITAR is an architecture that incorporates the basic ideas of fault tolerant computing
[2, 6, 8,10] such as redundancy, voting, and adaptive reconfiguration, along with accep-
tance testing. It endeavors to extend fault tolerant capabilities to vulnerable commercial-
off-the-shelf servers. Protection provided by the SITAR system enables protected servers
to continue providing service in the presence of intrusion or compromise. The integrated
adaptive reconfiguration feature of the SITAR system dynamically changes the system
configuration in response to the changes in level of intrusion threat in order to main-
tain service availability. Incorporation of an adaptive reconfiguration mechanism into
the SITAR system has implications on system operation. One such implication is an
observed phenomenon known as oscillation. For systems with multiple configuration
alternatives, oscillation describes a behavior of the adaptation mechanism to repeatedly
vacillate among the configuration options. An intruder can potentially use this behavior
to inflict an attack on the system, resulting in a denial of service by the system.

The following discussion presents important aspects of the SITAR adaptive recon-
figuration mechanism and how it addresses the oscillation problem. Section 2 gives a
brief overview of the SITAR architecture. Section 3 explores the SITAR dynamic re-
configuration mechanism and presents a general algorithm of its operation. Section 4
identifies and discusses a recognized side effect of reconfiguration, the oscillation phe-
nomenon; the discussion includes identification of the problem, a potential means of
exploiting the vulnerability, and mechanisms used by SITAR and other adaptive sys-
tems to mitigate the impact of oscillation. Section 5 includes a discussion of the current
adaptive reconfiguration implementation and integration with the rest of the SITAR
system as well as details of two demonstration engagements that showcased the SITAR
system’s functionalities.

2 SITAR Architecture Overview

SITAR (Scalable Intrusion Tolerant Architecture) is a DARPA funded project under the
OASIS program [12]. The goal of SITAR is to augment the fault tolerant capabilities
of distributed web services, specifically a cluster of distributed COTS (Commercial Off
The Shelf) servers. The architecture aims to detect and mitigate the effects of intrusions
in order to maintain continued system operation in the presence of intrusion. It provides
a framework for implementing a fault tolerant facade in front of a cluster of intrusion
vulnerable COTS servers. The architecture incorporates basic ideas of fault tolerant
computing such as redundancy, ballot voting, and dynamic reconfiguration, and along
with acceptance testing and validation.

The architecture, shown in Figure 1, specifies four key of processing modules. The
Proxy Module (PM) accepts client requests on behalf of the SITAR system and returns
an appropriate response to the client. The Acceptance Module (AM) uses acceptance
testing to check the appropriateness of client requests and validity of server responses. It
transmits acceptable requests, via a wrapper module, to a server within the server cluster
and retrieves the server response for validation. The Ballot Monitor (BM), using voting
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techniques selects an acceptable server response when there are redundant AM(s), and
passes the validated response to the PM(s).

In addition to the processing modules, the SITAR architecture contains two moni-
toring modules, AuditControlModule (ACM) and the AdaptiveReconfigurationModule
(ARM). The ACM, using distributed agents, monitors execution parameters of SITAR
processing modules and COTS servers. In addition, it performs trending analysis to
predict when COTS server execution degrades beyond acceptable limits and employs
software rejuvenation techniques to persuade the server to resume acceptable operation.
The ARM acts a system supervisor [14] that monitors the SITAR processing modules
operation. It is responsible for maintaining a global system snapshot of the distributed
components participating in processing, analyzing trigger messages to determine the
level of threat perceived by the system and the probable source of system compromise,
and changing system components to ensure continued operation as the execution envi-
ronment changes.

The SITAR system can be configured into one of many user specified postures,
at any given time, in order to mitigate the effects of malicious attacks. As the system
detects the effects of attacks to the SITAR modules and/or the COTS servers that it pro-
tects, the ARM dynamically changes systems threat posture configuration to increase
redundancy of checking, voting, and the number of concurrent request sent to different
COTS servers in the cluster. The current SITAR implementation uses three (3) threat
postures configurations, which the ARM chooses among, based on the perceived sys-
tem threat. When SITAR system is under low threat from the environment, the SITAR
system is configured with minimal checking for faster performance. While at higher
levels of threat, the system increases redundancy for increased checking and continued
availability, with albeit degraded performance.

3 SITAR Adaptive Reconfiguration

3.1 Design Analysis

In the SITAR architecture, the ARM is primarily responsible for planning and initiat-
ing configuration changes in the system. The ARM is capable of changing attributes



of SITAR modules or selected aspects of the user policy. It has access to information
generated by the SITAR modules and user specified policy information. In order to de-
velop a suitable reconfiguration mechanism, it is necessary to examine the nature of the
available information and how it describes the system operation in order to determine
what changes the ARM can make to the SITAR modules to affect request/response
processing and system availability.

In order to assess the set of system information available to the ARM, the overall
system architectural specification and the module behavior are examined. According the
architecture specification shown in Figure 1, all modules send trigger messages when
they detect compromise or errant behavior in other SITAR modules. In addition to trig-
ger information, the modules also transmits a wide variety of state information to the
ARM. The state information includes static and dynamic parameters. Static information
includes identification information, e.g. name and module type, as well as processing
capability limits such as the maximum number of concurrent processing paths that it can
participate. Dynamic information, configured at initialization and changed during exe-
cution, encompasses parameters that track the modules current activity, for example the
number of computing resources that are busy processing request/response exchanges,
and what service protocols the modules understands, such as HTTP and DNS. Other
information that may be useful for reasoning includes performance statistics, but the
modules do not currently transmit that information. Together module’s static and dy-
namic information construct a profile of the system’s limits and its current behavior
[15], as well as its availability to assume additional work. Refer to textbox below for
examples of module state information. User specified policy information is made avail-
able to the ARM. The policy information details the acceptable configurations along
with their operational parameters. The policy information describes when a specific
threat posture is applicable and the thresholds of operating within the posture. When
the system exceeds the posture threshold, a new threat posture needs to be selected and
the system should be changed to comply with the new threat posture configuration.
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After examination of the system behavior, the set of changes that the ARM can
make to each SITAR module are identified. Knowing a module’s maximum resource
capability and its current resource usage, the ARM can increase or decrease the number
resources available of processing. Resource capability adjustments enable the process-
ing capacity to vary with a given threat posture. For example in times of heavy work-
load, more resources can enabled to system to increase request load while not changing
threat level, which adds more checking. When a SITAR module experiences compro-
mise, the entire module may be compromised or a service that it provides may experi-
ence problems. The ARM can exclude an entire module or a service within a module.
Exclusion here means that either the module is prevented from accepting work for a spe-
cific service or for all services. In the event that a module is prevented from accepting
work for all services, it is prevented from accessing the main communication infrastruc-
ture, isolating it from the system. SITAR modules have three general operating states -
configured, un-configured or excluded. These states describe a module’s participation
in request/response exchange processing. Configured modules actively participate in
processing, i.e. perform their assigned checking functions; Un-configured modules per-
form minimal tasks to maintain group membership, but do not participate in exchange
processing; Excluded modules are prevented from communicating with other modules
in the system. The ARM can change the operational state of a module to affect sys-
tem availability, by configuring more modules, freeing unneeded modules, or removing
compromised modules.

As the number of modules increases, the ARM can become overwhelmed with in-
formation. As a means of managing the quantity of information received by the ARM,
it employs separate message collection paths to gather and perform interim analysis
on incoming information before the reconfiguration mechanism is notified. The ARM
uses trigger information to reason about the hostile nature of operating environment,
expressing it as a numeric quantity for comparison with established thresholds, and
identify which modules have been compromised and must be excluded from the sys-
tem. The state information is used to identify resource inadequacies or excess when
compared to the user defined threat posture configurations.

Development of this adaptive reconfiguration mechanism requires identification of
output information provided by the system and input information that the mechanism
can inject into the system to affect change. The SITAR system provides trigger mes-
sages and module state information in order for the mechanism to access the current
system behavior and the degree of threat present in the system. The mechanism changes
the SITAR system by transmitting directive orders to alter the SITAR modules. Those
changes include changing aspects of the modules internal state such as as its operation
state, the number of resources (within its specified limits), and the service offerings.
In addition to system generated information, the mechanism also has access to user
specified policy parameters that define the scope of the system configuration with ac-
companying thresholds. The manner in which information is exchanged between the
ARM and the SITAR modules is consistent with the feedback loop module, meeting
many of the requirements identified by Shaw [13] that enable one to apply this model
to the SITAR system.



3.2 SITAR ARM Algorithm

The adaptation mechanism in SITAR system is modeled as a feedback loop system [13].
The mechanism continuously evaluates the available system information and changes
the system to ensure continued system availability as the system execution parameters
and environment change. The following presents the input, the output, and the general
steps of the reconfiguration mechanism used to manage the SITAR system.

A. Input

— Policy (P) User preferences are input into the ARM through a configuration file
that describes the governing policy of the system operation. The policy contains
descriptions of each threat posture configuration along with its associated thresh-
old parameters. The threat configuration indicates the minimal number of modules
of each module type that are required in order to provide adequate checking and
validation of request/response exchanges for a specific threat posture. The thresh-
old parameters are numerical limits that establish the bounds of the configuration
applicability, such as acceptable thresholds for trigger message rates and perceived
environment threat rating. When the system operation exceeds the thresholds, a
new threat posture is chosen.

— Reconfiguration Condition (C) The reconfiguration condition describes a persis-
tent situation that may warrant reconfiguration action. Resulting from analysis of
either state or trigger information, the condition represents diagnosis of a problem
or a reason to change the system and may be optionally accompanied by additional
information describing the extent of the discrepancy. For example, state messages
could reveal that not enough modules are in the configured state for the current
threat posture and the additional information indicates the numeric extent of the
deficiency.

One reconfiguration condition may occur as the result of the values of one or more
system parameters and required changes to rectify the condition that may affect
more than one other system parameters. So a condition must also include other
information to help the reconfiguration mechanism determine appropriate actions.
In order to generalize the reconfiguration operation, the parameters and compari-
son strategies for each reconfiguration condition can be defined separately, e.g. in
separate reusable classes, in an object oriented system, and grouped as needed to
support the condition. The supporting condition information includes:

e Snapshot Parameters a list of parameters in the snapshot that provides infor-
mation about this condition.

e Policy Parameter Mapping a list of policy parameters that can be used to
assess the extent of the condition.

e Comparison Strategy definition of how to compare the snapshot and policy
parameters to confirm the existence of the condition.

e Change List an ordered list of related change actions that may rectify the con-
dition. For example, excluding a module may cause a resource deficiency so a
related change would be to try configuring a stand by module of the same type.



After the first change is applied, changes are applied in order to attempt to rec-
tify implications of the change. The mechanism attempts apply the minimum
number of changes to rectify the conditions, so all changes by not be necessary
given the system current state.

— Snapshot (S) The system snapshot is a special input. It is an active repository
that represents the latest state information of the module participating the system.
SITAR modules are distributed throughout the network, so the snapshot is central
repository of the states of the all the modules. The snapshot is derived from the
state update information sent by the modules and is consulted by the reconfigu-
ration mechanism to confirm the persistence of conditions and provide a base for
reconfiguration changes. The snapshot is described as active because, it can also
generate reconfiguration conditions if incoming state messages cause conflicts be-
tween the operating system state and the configuration requirements contained in
the policy.

B. Output

The reconfiguration mechanism produces changes directives. A change directive
describes one aspect of the system that should change. The mechanism effects changes
to the policy and/or system. Below are descriptions of each class of output change di-
rectives. Since the reconfiguration analysis process may be an involved computation,
the ARM attempts to deliver as many related directives in one shot, so the actual out-
put of the reconfiguration mechanism is a set of change directives, the output directive,
denoted as D in the algorithm, may consist of one or more change directives, where
each change directive has a specified destination - the global policy or a specific mod-
ule. For directive issued to modules, the ARM keeps track of the directives, awaiting
acknowledgment from the target module that the change has been completed. Failure to
complete the reconfiguration directive is viewed as not compliance which may result in
additional action.

— Policy Change The ARM is permitted to update the policy information by setting
the threat posture selector to choose a new threat posture. In the current SITAR
implementation, the system can be configured in one of three threat posture con-
figurations, labeled 0, 1, and 2. If analysis of trigger information reveals the threat
posture thresholds have been exceeded, the the ARM may choose the next higher
threat posture by changing the threat posture selector presently at 1 to 2.

— System Change The system that the reconfiguration mechanism endeavors to con-
trol is the set of SITAR processing modules. So a system state change is a change
to the internal state of a SITAR module ordered by the reconfiguration mecha-
nism. Changes include adjusting a module’s resource capabilities (within its lim-
its), changing its operational state, and/or excluding one of its services or the whole
module from the system.

C. Algorithm Definition

Algorithm 1 describes general procedural steps performed by the reconfiguration
controller to determine what reconfiguration is warranted, using the system snhapshot



and the global policy as input. The algorithm assumes that the module state update time
is reasonably faster than the processing time so that the ARM can maintain a reasonable
representation of system activities.

Algorithm 1 : Reconfiguration Algorithm
Require: global policy, P
Require: system snapshot, S
Require: reconfiguration condition, C
Require: boolean indicating 1 or more snapshot parameters violate policy requirements,
violationExists
Require: boolean indicating reconfiguration is necessary, recon figNeeded
1: tl < retrieve current threat posture value from P
2: pparams <« retrieve the values of policy parameters associated with C
3: sparams < retrieve the values of snapshot parameters associated with C
4: reconfigNeeded <+ results of C’s comparison strategy of pparams and sparams
5: if reconfigNeeded == TRUE then
6
7
8

while C’s change list has more entries AND violationExists == TRUE do
retrieve the next element in C’s change list
compute appropriate amount(s) to change parameter(s) to satisfy C

9: select a module to reconfigure
10: create new change Action with parameters module 1D, parameters, changeAmounts
11: if changeAction == PENDING then
12: discard changeAction {prevent re-issue of duplicate changeAction awaiting ac-
knowledge}
13: continue to next iteration of while loop
14: else
15: add changeAction to D
16: generate a new snapshot, S’, by adding changeAmount to S
17: violationExists < reconcile S’ with P
18: end if
19:  end while
20:  Output D
21: endif

The algorithm starts by retrieving the current threat posture value from the global
policy which determines the specific threat posture and threshold values that applies at
the current time. The appropriate values of the global policy and the snapshot parame-
ters associated with the condition are retrieved and stored in local variables. The com-
parison strategy associated with condition C is used to compare the snapshot and policy
values, determining if reconfiguration is warranted. If reconfiguration is warranted, then
the algorithm attempts to satisfy the condition, by making changes to snapshot parame-
ters directly affected by the condition. A new snapshot is computed as each parameter is
changed. The new proposed snapshot is compared with the policy values to see if any of
its parameters violate the thresholds. If suitable changes can be found, the change direc-
tives are sent which change the system state values accordingly with acknowledgments
sent when the change is completed, as necessary. The cycle ends when all the changes



in the change list have been attempted to derive an acceptable snapshot. If at the end
of the cycle a violation still exists, a new cycle is may be initiated which incorporates
new module state updates. The goal of the algorithm is make reasonable changes based
on the policy. However, it may require more than one cycle of examination in order to
resolve all conflicts.

D. Algorithm Implementation

The SITAR ARM implements the reconfiguration algorithm, described in the previ-
ously, which adjusts SITAR system parameters based on analysis of various aspects of
the system operation. The mechanism employs are two loosely coupled feedback paths,
shown in Figure 2, which provide immediate as well as longer term responses to system
conditions. The inner feedback loop, containing the Syst enSnapshot component,
incorporates state update information into a global view of the modules participating
the system. This loop provides fast response to reconcile isolated resource issues. For
example, when a module joins or leaves the system, the resource and service availability
of the system changes. The changes may require reconfiguration action to the config-
ure, i.e. change to an active state, one or more SITAR modules, or advertise support for
a new service. Also, if the system is experiencing a high workload that is not related
to an attack, modules may be directed to increase their worker resources to accommo-
date the extra load. The outer feedback loop performs more analysis and attempts to
reason about interdependencies among the system modules and about the overall state
of the execution environment, particularly the perceived threat from the environment.
This analysis may take longer, requiring more analysis cycles to arrive at a reasonable
conclusion. The results of that analysis may cause more substantial changes that may
alter the global policy and change internal states of multiple modules. The reconfigu-
ration actions of this loop are intended to affect the system availability over extended
time periods.

In Figure 2, the Pol i cyRul es component collects user configurable parameters
that are set before system initialization and can be changed during system execution.
The Pol i cyRul es component generates the global policy that governs the reconfig-
uration operation. The global policy is accessible by all mechanism components that
require policy input, so in the figure all references to “Global Policy” refer to the policy
generated by the Pol i cyRul es component. The core of the reconfiguration mecha-
nism is the Reconfi gur ati onDi r ect or, which accepts as input the global policy
as well as environmental information and generates a variety of reconfiguration direc-
tives to change the state of the processing environment and/or update the global policy.

In this feedback system model, the environment to be controlled is defined as the
set of SITAR modules processing the request/response exchanges. During execution,
modules send two types of information, state update and trigger messages, to the ARM
which uses this information to reason about the SITAR system operation and the ex-
ecution environment. The state update messages provide update-to-date information
about modules’ resource capabilities. Modules send trigger information when they de-
tect anomalous behavior in other SITAR modules or COTS servers. The state update
and trigger information are analyzed along separate feedback paths.

Periodic state update information from the modules enable the ARMto develop and
maintain a global view of the modules participating the SITAR system; the view is



Adaptive Reconfiguration Mechanism

Configurable . . .
Parameters- set Configuration AIIemallv@
atinit or runtime Threshold Parameters Global Policy *

Policy
Priority Value Mappings, Rules
_Friority Value Mappings, |

Threat Level

Increase/ Decrease Worker Limit
Global Policy * Reconfiguration Configure/ Unconfigure Module PrSITA!;i1
Director Exclude Service N Mcowdulesg
Exclude Module
h snapshot
T Query
h Global Policy *
IR System D —
Resour ce Constraint Violation Snapshot
[«——Module State Update
fsnapsho‘
| Query
Root Cause I dentification ——————— Global Policy *
Threat Threshold Violation Trlggq
Processing Triogers
Steady State Detected ——————————————————| 115
I A
Reset | | Expire
v i
Conditions for Sleady_stale
Reconfiguration Monitor

Fig. 2. Reconfiguration Feedback Loop Mechanism

called the system snapshot. The Syst enSnapshot component actively updates its
information based on the information contained the module state update messages. It
is the central repository that facilitates reasoning about the SITAR environment, as the
modules are distributed throughout the network residing on any number of independent
host machines. The Syst enSnapshot accepts queries from other mechanism com-
ponents, providing them with pertinent information for their reasoning and analysis.
As state update information is incorporated into the Syst enBnapshot , analysis is
performed to determine whether the new system state meets the system requirements
set forth in the global policy. Discrepancies between the system’s state and the system
requirements are identified as sufficient reasons to perform reconfiguration. Analysis
of the Syst enSnapshot information generates resource violation messages that are
sent to the Reconf i gur ati onDi r ect or . Resource violations are defined in terms
of discrepancies in processing resources, such as there are not enough configured mod-
ules or processing workers for the current threat posture configuration.

Trigger messages are sent to the ARMby other SITAR modules when they detect
anomalous behavior in their neighbor modules. The errant behavior or compromise may
be an effect of a malicious attack. Thus, analysis of trigger messages allows the system
to assess the level of threat, malicious or unintentional, present in the environment. The
first phase of trigger processing performs fast event correlation in order to determine
the source of the compromise. The event correlation uses a two step process to isolate a
module or service that is compromised. The first correlation uses a sliding time window
to analyze the triggers as a group, preventing unnecessary action for transient trigger
occurrences. The triggers are categorized based on information that they contain, e.g.



the suspected source of the problem. If any category of triggers exceeds the user estab-
lished policy threshold, an alarm condition is declared. An alarm condition represents
a persistent problem in the system. The second stage analyzes the alarms to determine
if action is warranted. The alarm analysis generates histogram of alarm information for
each service and examines it to identify which module has proportionally more triggers
identifying it as the source of the compromise. If a module or service is identified as the
source of compromise, action is taken against it. The second phase of trigger process-
ing uses the number or occurrences a trigger and its priority classification to calculate a
number rating of the perceived system threat. The threat value is the sum of the products
of the number of occurrences and the numerical priority value for each class of triggers.
If the calculated threat value exceeds the established policy threshold, then reconfigu-
ration action is warranted. While triggers indicate increase environment threat, lack of
triggers indicates no new or diminishing threat and in response, the system can assume
a less suspicious posture. The mechanism employs a steady state monitor to recognize
periods where no new triggers are received. When the steady state period expires, then
system may be changed to configuration with decreased redundancy and higher per-
formance. The trigger processing and steady state monitoring operate in an exclusive
manner with the trigger processing receiving precedence. So when a trigger is received,
the steady state monitoring is halted and is only resume after sufficient time has lapsed
without any triggers.

The reconfiguration conditions identified during the analysis of the environmental
information is sent to the core reconfiguration agent, the Reconfi gur ati onbDi -
r ect or, which determines what changes to make the system. The Reconf i gur a-
ti onDirect or determines what actions to take based on the condition that is iden-
tified during analysis and information in the current snapshot. The reconfiguration di-
rectives change the states of the SITAR processing modules and/or change the policy’s
threat posture value. The policy threat posture value determines which threat posture
configuration that the system assumes and which thresholds to consider when making
reconfiguration decisions.

4 QOscillation Problem and Solutions

4.1 Problem Definition

In systems with multiple configuration alternatives, the tendency to continuously fluc-
tuate between configuration options is the phenomenon referred to as oscillation. As
an adaptive system accesses its environment, it makes changes to the target system’s
configuration in response. However, if the changes are too frequent and uncontrolled,
the system may never converge to one of the accepted configurations, resulting in unin-
tended system instability. While eliminating the ability of the system to change accord-
ing to the environment prevents oscillation, it also relegates systems to the statically
configured system that the industry is attempting to evolve from. An alternative is to
minimize the impact of the systems oscillation tendency by enacting control measures
for the adaptation mechanism.

Other research projects acknowledge the existence of the problem and some include
methods for mitigating adaptation oscillation. Chen [4] describes an adaptive system



that includes adaptation aware modules (AAM) at various levels of the system archi-
tecture. The discussion suggests the development of a selection function which “must
also prevent oscillation between alternative AAMs”. Karsai [14] recommends avoiding
“situations where the system spends most of its time switching between configurations”
and acknowledges that further study is needed to define stability for self adaptive soft-
ware. In the Ginga system developed by Paques et al., the adaptive query processing
system uses a wait time to “prevent oscillation in feedback-based adaptation” [9]. The
use of such a wait affects the speed of reconfiguration, possibly introducing delays if
the time too long. Pagques points out that development of a precise wait time is a hard
problem requiring predictions of the environment’s future behavior. Managing conflict-
ing reconfiguration goals, the Willow project [3] employs a resource manager and pri-
ority enforcer, ANDREA, to issue reconfiguration changes in partial ordered fashion
according to the established priorities of reconfiguration actions. ANDREA is preemp-
tive giving higher priority reconfiguration changes precedence and uses transactions to
allow rollback of failed changes.

In the fault tolerant systems such as SITAR, any component can be the target of
attacks, including the system supervisor, ARM. While the ARM design does include
the capability of redundancy in case of primary ARM failure, an attacker could employ
a manipulative stream of requests that attempts to trigger repeated system reconfigu-
rations in short spans of time. The rapid reconfigurations would become an internal
system disruption, that may severely impact system performance or availability. This
process can be viewed as a form of denial of service attack exploiting the oscillation
problem. The next section discusses how the SITAR attempts to mitigate such an attack.

4.2 SITAR Mitigation Mechanisms

The SITAR adaptive reconfiguration mechanism changes the system to one of a known
set of configuration alternatives or threat postures. The mechanism applies the config-
uration alternatives in order where lower threat postures provide higher performance
with reduced checking and higher threat postures provide increased checking through
redundancy and continued availability in the presence of intrusions. The goal of the
adaptation mechanism is to response quickly to intrusions increasing redundancy for
checking and availability, however, the quick response should be tempered so that the
reconfigurations do not impede the system operation. Figure 3 depicts the desired adap-
tation response to environmental hostility represented by intrusion trigger activity. The
graph demonstrates that the system should responds reasonably quickly as the envi-
ronment hostility increases. However, the adaption behavior does not precisely follow
the trigger behavior and move to lower threat posture when it first detects a significant
decrease in triggers. The goal of a delayed descent to lower threat level, enables the
system maintain an adequate threat posture if the threat resumes after a short period of
time. In the graph, when the barrage of trigger messages resumes, the system is already
in an elevated threat posture, so system is in position to respond to the continued attack
and mitigate its effect, without additional reconfiguration.

The SITAR adaption mechanism discussed in Section 3 implements this desired
behavior. Referring to Figure 2, the initial detection response is handled by the trigger
processing feedback loop, when an escalating rate of triggers is detected, the trigger
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processing determines that the system should increase its threat posture. In order to
control the ascent to different threat posture, the mechanism changes the threat posture
to the next highest threat posture one at time as needed until one posture is judged
suitable or the highest posture with the most redundancy is reached. Increasing the
threat posture is given precedence, as it increases redundancy and availability

In opposition to increasing the threat posture, the St eadyst at eMoni t or tries
to detect the absence of triggers so that the system can move to a lower threat pos-
ture increasing performance. These two opposite system drives affects the mechanism’s
tendency to oscillate among the threat posture alternatives. It is here that the SITAR sys-
tem implements control so that the competing drive to descend to lower threat posture
for performance is balanced with the systems desire to meet its fault tolerance goals.
First, the two opposing drives are linked allowing them to operate in mutually exclu-
sive manner. That is, the trigger processing which increases the threat level can preempt
the steady state monitor so that the system can response to escalating threats promptly.
The trigger processor restarts the monitor when trigger messages cease. Second, the
St eady St at eMoni t or employs at timer to monitor the system for an absence of
triggers over a period of time, the steady state period. The period* for steady state mon-
itoring is user configurable and introduces a delay just in case an attack should resume;
the system remains at a sufficient posture to mitigate the effects the renewed attack.
When the steady state period has elapsed with no trigger messages, the mechanism
does not blindly descend to a lower threat posture because modules may be still work-
ing on requests that arrived during the attack. Moving to a lower threat posture may
significantly affect the system’s processing capabilities by removing needed resources,
thus disrupting the processing still in progress. Once the steady state is reached, the
adaptation mechanism checks the system resource usage. The mechanism will not at-
tempt to reduce the threat posture until the system resource usage begins decreasing
as some processing completes. This slower descent allows the system to complete pro-
cessing, release resources in an orderly fashion, and the adaption mechanism to move
the system lower threat posture in a controlled manner that reduces the tendency toward
oscillation. The SITAR adaptation mechanism mitigates the effects of oscillation in re-

1 As mentioned above, the use of a static time period has some drawbacks. An alternative ap-
proach could be to use a time period that is determined by a probabilistic distribution around a
mean time, producing some variability and increasing the work factor for the attacker attempt-
ing to tailor a request stream.



sponse to substantial environment fluctuations by implementing mechanisms to control
both the ascent and descent between threat postures; the mechanism employs mutual
exclusion of competing drives, a steady state period, as well as incorporating current
system activity in a manner that discourages oscillation among the threat level postures.

5 System Prototype and Demonstration

The adaptive reconfiguration mechanism described in the previous sections is imple-
mented in the adaptive reconfiguration module (ARM) in the SITAR prototype system.
The SITAR prototype, including the ARM, is implementing in Java Programming Lan-
guage and uses Sun Microsystem’s Jini [7] and JavaSpace [5] technology as its main
communication infrastructure. The ARM employs modular, multi threading, and syn-
chronization design techniques in order to implement a loosely coupled, yet cooper-
ative, set of subsystems to realized the adaptive reconfiguration functionalities. Fol-
lowing system initialization, the ARM advertises, to active SITAR proxy modules, the
system’s service and resource availability based on the state information provided by
registered modules. The Proxy Module establishes module participation in processing
pipelines through request and response negotiations. Subsequently, the ARM changes
the service offerings and resource availability as the module’s changes state, through
client-server request/exchange processing, and levels of participation in the system. In
addition, the ARM reasons about the environment using the state and trigger informa-
tion, transmitting appropriate reconfiguration directives the adjust the resource avail-
ability or change the system threat posture.

The prototype implementation was publicly demonstrated on two occasions present-
ing various aspects of the SITAR functionality. The first demonstration at the DARPA
OASIS 2002 Summer Pl Meeting Hilton Head South Carolina included the first sta-
ble implementation of the adaptive reconfiguration mechanism. Although it used one
static configuration, the presentation demonstrated the overall flow of control informa-
tion between the ARM and processing modules. At that stage, the ARM was able to
retrieve the available system information, maintain a system snapshot and preform cur-
sory checking of the state and trigger information. The system configuration space con-
sisted of one base threat posture configuration. At that stage of development, the system
demonstrated its ability to protect a server cluster consisting of three web servers. The
demonstrations showed SITAR’s ability to detect and mask, through acceptance testing
and bhallot voting, the effects of a simulated Code Red attack while continuing to deliver
appropriate responses to the client.

In the second demonstration at the 2003 DISCEX |11 Conference in Crystal City Vir-
gina, the SITAR prototype implementation contained a more extensive adaptive recon-
figuration implementation that performed the system adaptation as a described above.
The ARM managed a system shapshot, performed reasoning about the system informa-
tion and dynamically changed the system threat posture accordingly. The implemen-
tation included three threat posture configurations and provided service for DNS and
HTTP requests. The ARM dynamically adjusted the service and resource availability
advertisements as modules entered, left, or were removed from the system. In addi-
tion, the system changed the system among the threat postures in response to the cues



from the environment, i.e. triggers from SITAR modules. The demonstration showed
that the system could detect and tolerate the effects of attacks to the COTS servers and
SITAR modules. The attack scenarios included a variety of direct and indirect threat
situations. The client initiated an attack by submitting a malicious request and SITAR
prevented the propagation of errant response from compromised server. A covert at-
tack compromised one of the servers and SITAR detected the difference in server re-
sponse, prevented the dissemination of corrupted information. Through fault injection,
a ill behaved SITAR module was allowed to participate in the system. Once detected
through trigger information, the ARM removed the misbehaved module and configured
a standby module so that the system could continue operation and raised the system’s
threat posture, if warranted. SITAR was also able to detect the effects of a memory
leak attack, exploiting a server vulnerability were memory was not being completely
freed after a simple request. SITAR detected the abnormally high rate of memory us-
age by the server through predictive trending and determined when to restart the server
before it experienced total memory consumption and subsequent failure. In addition to
direct attacks, SITAR also was able to withstand natural faults due to physical network
separation. In that case, the network cable connecting a module’s host machine to the
network was removed and the module was not physically able to perform its member-
ship maintenance duties. The ARM detected the modules absence through missed keep
alive messages, removed the module’s information from the snapshot and configured
another stand by module so that the system could continue operating.

6 Conclusion

Industries are embracing software systems that operate for extended periods of time,
adjusting to environmental changes that may include attacks. SITAR is a intrusion tol-
erant architecture that incorporates the basic of fault tolerant computing such as re-
dundancy, voting, adaptive configuration, along with acceptance testing. The goal of
SITAR project is to augment fault tolerant capabilities of vulnerable COTS servers, en-
abling them to continue providing service in the presence of attacks. Implementation of
the architecture detects and masks the effects of attacks through dynamic redundancy
adaptation, acceptance testing and ballot voting. SITAR’s integrated dynamic recon-
figuration mechanism uses a feedback loop model to change the SITAR configuration
and resource parameters in order to sustain continued system availability. Examination
of the SITAR architectural specification and operation used to develop the reconfigu-
ration mechanism was discussed. The resulting general reconfiguration algorithm was
presented. Systems, such as SITAR, with multiple configuration alternatives can ex-
perience the oscillation phenomenon, where the system continuously wavers between
configuration alternatives. SITAR uses three complementary strategies to minimize the
impacts of oscillation. It uses a steady state monitor, mutual exclusion of drives to
increase and decrease the system threat posture, and system operation inspection to
control the changes in configurations, so that system reconfigurations are performed in
a controlled manner in spite of potentially erratic environment fluctuations. The adap-
tive reconfiguration mechanisms as describe in implemented in a SITAR prototype and
was demonstrated on at the DARPA OASIS 2002 Summer Pl Meeting and the 2003



DISCEX Ill Conference. Each demonstration showcase the various capabilities of the
SITAR system, including the adaptive reconfiguration mechanism for monitoring the
SITAR modules and changing the system’s threat posture in response to environmental
conditions.
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